Kali ini kita belajar fisika gerak melingkar beraturan dan gerak melingkar berubah beraturan. Gerak melingkar adalah gerak suatu benda dengan lintasan garis lengkung dengan berpusat pada satu titik pada jarak yang tetap. Jenis gerak melingkar ada 2, beraturan dan berubah beraturan. Berikut penjelasannya.
1. Gerak Melingkar Beraturan (GMB)Gerak melingkar beraturan atau GMB adalah gerak melingkar dengan kecepatan konstan (beraturan). Pada GMB kecepatan sudut selalu tetap dan percepatan sentripetalnya sama dengan nol. Jika ω (omega) merupakan lambang dari kecepatan sudut, θ adalah perpindahan sudutnya, dan t adalah rentang waktunya. Maka persamaan dari ketiga komponen tersebut didapat rumus persamaan gerak melingkar beraturan
θ = t. ω
persamaan ini mirip dengan GLB s = v.t, untuk cepat menghafalnya sobat bisa menggunakan jembatan keledai “Tetanggaku Tuan Omega” –> θ = t. ω
2. Gerak Melingkar Berubah Beraturan (GMBB)
Yang membedakan Gerak Melingkar Berubah Beraturan dengan Gerak Melingkar Beraturan adalah adanya percepatan sudut α (Alfa). Ini sama dengan perbedaan GLB dengann GLBB. Karena ada percepatan (alfa) maka kecepatan sudut ω akan mengalami perubahan. Jika alfa positif berarti kecepatan sudut akan semakin bertambah (dipercepat). Sebaliknya, jika percepatan (alfa) negatif makan kecepatan sudut semakin berkurang (diperlambat). Rumus / Persamaan Gerak Lurus Berub ah Beraturan :
θ = t. ω + 1/2 α t2
Perhatikan sobat hitung kalau ini mirip dengan GLBB
s = V0.t + 1/2 a t2
Buat mengingat-ingat, ingt saja rumus GLBB. :D
Hubungan antara kecepatan sudut dan percepatan sudut nya kaya gini sobat
α = (ω2 – ω1)/t hayo,, mirip kan sama a = (V2-V1)/t di GLBB
Hubungan Kecepatan Sudut, Percepatan Sudut, dan Perpindahan Sudut
Δ (ω2) = 2.α.θ sobat bisa dibaca Wowok Menggoda 2 Anak Tetangga ;D
Rumus di atas mirip pada persamaan GLBB Δv2=2.a.s
Contoh Soal Gerak Melingkar
Sebuah mesin giling berbentuk lingkaran melaju dengan kecepatan sudu 120 rpm. Kemudian mesin dimatikan dan berhenti setelah menempuh 100 rad. Berapa perlambatan sudut yang dialalmi oleh mesin giling tersebut
Pembahasan
1. Kita ubah dulu kecepatan putar rpm ke dalam kecepatan sudut bentuk rad/s
ingat 1 kali rotasi = 2 π rad
120 rpm = 120 x 2 π rad/ 60 = 240 π rad/60 = 4 π rad/s –>ω
2. Kita Masukkan ke rumus
Δ (ω2) = 2.α.θ
α = Δ (ω2) /2.θ = 02-(4 π )2/2. 100
Silahkan dilanjut kan sendiri ya.. :D
Selamat Mencoba…
No comments:
Post a Comment